Outcomes of gait trainer use in home and school settings for children with motor impairments: A systematic review

Ginny Paleg1 and Roslyn Livingstone2

Abstract

Objective: To summarize and critically appraise evidence regarding use of gait trainers (walkers providing trunk and pelvic support) at home or school with children who are unable to walk independently or with hand-held walkers.

Data sources: Searches were performed in seven electronic databases including EBM Reviews, CINAHL, Medline and EMBASE for publications in English from database inception to November 2014.

Review methods: Included studies involved at least one child with a mobility limitation and measured an outcome related to gait trainer use. Articles were appraised using American Academy of Cerebral Palsy and Developmental Medicine criteria for group and single-subject designs and quality ratings completed for studies rated levels I-III. The PRISMA statement was followed with inclusion criteria set a priori. Two reviewers independently screened titles, abstracts and full-text articles.

Results: Seventeen studies involving 182 children were included. Evidence from one small randomized controlled trial suggests a non-significant trend toward increased walking distance while the other evidence level II study (concurrent multiple baseline design) reports increased number of steps. Two level III studies (non-randomized two-group studies) report statistically significant impact on mobility level with one finding significant impact on bowel function and an association between increased intervention time and bone mineral density. Remaining descriptive level evidence provides support for positive impact on a range of activity outcomes, with some studies reporting impact on affect, motivation and participation with others.

Conclusions: Evidence supporting outcomes for children using gait trainers is primarily descriptive and, while mainly positive, is insufficient to draw firm conclusions.

Keywords
Assistive devices, cerebral palsy, child rehabilitation, walking, mobility

Received: 5 October 2014; accepted: 6 December 2014
Introduction

The ability to move from one place to another independently appears to play a pivotal role in social development\(^1\) and psychological function.\(^2\) The transition from crawling to walking marks an important progression in overall development and social interaction in infants.\(^3\) Children with cerebral palsy or complex developmental delays are often less mobile and interactive than their peers.\(^4\) This lack of mobility and dependent positioning can have a negative impact on overall development, social interaction and social status.\(^5,6\)

The Gross Motor Function Classification System\(^7\) classifies children with cerebral palsy (and similar/related conditions) according to their gross motor abilities. Children in levels IV and V are unable to use typical hand-held walkers due to impaired trunk control, strength, balance and range of motion. Children with complex developmental delays also benefit from walkers that provide additional trunk and pelvic support.\(^8\) Children with visual impairment or profound cognitive limitations may lack motivation to explore due to limited ability to engage in functional or stimulating activities.\(^9,10\) Supportive walking devices or gait trainers may be used with these populations to influence different types of outcomes as defined by the International Classification of Functioning, Disability and Health (ICF).\(^11,12\)

Gait trainers commonly unweight the body through a solid or fabric ‘seat’, stabilize the trunk and support the pelvis. Survey data\(^13\) suggests that therapists hope to influence body structure and function components such as hip structure, cardiorespiratory function and bone mineral density through gait trainer use. Despite the apparent widespread and long-term use of gait trainers, to date there are no systematic reviews or published evidence-based clinical guidelines. The aim of this systematic review is to evaluate the evidence for all outcomes potentially impacted by use of gait trainers with children in home and school environments. The specific question addressed is, “for children with motor impairments, which outcomes are positively influenced by a gait trainer intervention?” Secondary questions address “which populations benefit from gait trainer interventions” and “at what age should they be introduced?”

Methods

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was used to structure this review.\(^14\) An electronic database search was undertaken from database inception to November 2014 and included: EBM Reviews: Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects (DARE), ACP Journal Club; CINAHL; Medline and EMBASE. As noted in online supplementary material Appendix A, search terms included ‘gait trainer’, ‘support walker’, ‘walking device, ‘ring walker, ‘infant walker”, ‘baby walker’, ‘body weight support gait trainer’, ‘walker’, ‘supported ambulation’, ‘David Hart Walker’, and ‘supported walking’. Search terms were used in combination with the term ‘equipment’ or with diagnoses such as ‘cerebral palsy’, ‘spina bifida’ or ‘muscular dystrophy’. No limits were placed on design methodology or publication status in the initial search.

Articles were included if they described primary source studies using quantitative or qualitative methods to explore outcome(s) resulting from use of a gait trainer and involved at least one child aged 18 years or younger with a movement disorder or motor impairment. A gait trainer was defined as a walker that is available with lateral and posterior components to stabilize or support the trunk and
pelvis as well as a rigid or flexible seat to provide body-weight support. Studies that did not provide sufficient description of the walker to determine if it met criteria were included only if the population was described in sufficient detail to determine that they would typically use a gait trainer or where it was known that the intervention described involves a gait trainer (e.g. Movement Opportunities Via Education).15 Studies using swivel walkers (e.g. Orlau walker), typical ‘infant walkers’, robotic devices (e.g. Locomat), exoskeletons or mechanical stepping devices with external power sources, stationary systems (confined to parallel bars or treadmill) or institutional-type gait trainers (e.g. Lite gait) too large to be used in a home or classroom environment were excluded as were non-English language and non-peer reviewed sources.

Bibliographies of electronically retrieved studies were manually searched to identify additional publications. Both authors independently read all titles and abstracts and agreed on the list of articles to be retrieved full-text. Following independent full-text review, both agreed to the list of studies meeting inclusion criteria. Differences of opinion were resolved at all stages through discussion and consensus without the need to involve a third reviewer.

Data were extracted independently by both authors using McMaster Critical Review forms for quantitative16 and qualitative17 designs. Consensus on content of tables and ratings was achieved through discussion. Outcomes and clinical information was divided into ICF11,12 components of body structure and function, activity and participation. Level of evidence was rated using American Academy of Cerebral Palsy and Developmental Medicine Evidence Levels.18 Quality assessment of Evidence Level 1-III studies was completed using American Academy of Cerebral Palsy and Developmental Medicine quality assessment.18

Results

The PRISMA flowchart outlining each step is shown in Figure 1.

Following full-text review, 17 articles met inclusion criteria19–35 with 97% initial agreement between reviewers and 100% achieved through discussion. Nine of the included articles were identified through manual searching.19-21,24-26,31,32 See online supplementary material Appendix B for details of excluded studies with reasons for exclusion.

Table 1 lists characteristics of included primary research articles. Evidence for effectiveness of gait trainers is limited as the majority of evidence is descriptive, with only two studies achieving level II evidence. One,19 a single-subject concurrent multiple baseline design reports an increased ability to step following introduction of the gait trainer. The only randomized controlled trial, compared body weight-support treadmill training and overground walking and found a non-statistically significant trend towards increased walking distance in the overground group.33 Two non-randomized group designs were also identified. One, comparing the effectiveness of the Hart walker to standing22 found a statistically significant increase in mobility skills and significant improvement in bowel function in the walking group. The other study compared the Movement Opportunities Via Education15 curriculum to traditional therapy and found statistically significant increase in independent mobility skills in the intervention group.31

One small randomized trial rated strong quality33 and the other higher level studies rated as moderate quality.19,22,31 Quality rating of these studies is summarized in online supplementary material Appendix C. Both authors independently rated evidence level and quality with 100% consensus achieved through discussion. Four studies explored outcomes from use of the Rifton Pacer,19,23,31,32 and another four involved the David Hart Walking Orthosis,22,30,34,35 a combination of a rear-support or hands-free gait trainer with lower limb reciprocal gait orthoses. One study21 used a Mulholland Walkabout in combination with a leg guidance system and another used the Kaye suspension system.20 The remaining studies did not identify the gait trainer used. Included studies reported use of gait trainers ranging from 5-minute sessions, many times each day24-29 to 4 hours per day several times a week.21 The most common use pattern appears to be 30 minutes daily (5 times a week).

The majority of studies included children with cerebral palsy and, while some24-29,31 defined
participants by level of intellectual disability, descriptions also suggest this diagnosis. Only one study included a child with a spinal cord injury of traumatic origin. Age of gait trainer use ranged from two or three years to 18, with the most prevalent age being 10 years.

Most studies relied on simple measurement tools such as step counters, counting steps from video-tape or measuring distance with tape measure and speed with a stopwatch. Four studies specifically reported carrying out inter-rater reliability checks of these measures. Only six studies used standardized outcome measures with the most common being the Gross Motor Function Measure and the Pediatric Evaluation of Disability Inventory. The single included randomized controlled trial was the only one to use standardized measures for walking speed and distance. The 10 Meter Walk Test was used to measure speed and endurance and the travel subscale of the School Function Assessment to measure walking function. These measures are reported to

Figure 1. PRISMA flow diagram of the search results.
Table 1. Characteristics of included primary studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>AACPDM Level</th>
<th>N</th>
<th>Population</th>
<th>Intervention</th>
<th>Time</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barnes and Whinnery, 2002</td>
<td>SSRD MDB</td>
<td>Level II</td>
<td>5</td>
<td>Total 3 used gait trainer</td>
<td>MOVE curriculum Rifton Pacer used with three students</td>
<td>Used daily in functional activities as per MOVE curriculum</td>
<td>1. Stable baseline 0 steps. Used gait trainer to increase walking to mean of 30.16 steps with assistance. Walking independently at 2 yr follow-up 2. Unable to step in baseline or intervention. Refused to use gait trainer in intervention but was able to walk 100 steps in gait trainer at 2 yr follow-up 3. 1.64 steps with adult assistance in baseline, 6.91 in gait trainer. Moved away and was not assessed at 2 yr follow-up</td>
</tr>
<tr>
<td>Behrman et al., 2008</td>
<td>Case report</td>
<td>Level V Group</td>
<td>1</td>
<td>1.2 yr old boy with severe incomplete SCI at C6/7</td>
<td>Treadmill and overground locomotor training including use of Kaye walker with suspension harness</td>
<td>20–30 mins treadmill and 10–20 mins overground training 5 x wk</td>
<td>Unable to make any independent movements with legs at start of locomotor training. Able to walk independently in rolling walker without body weight support at end of training period</td>
</tr>
<tr>
<td>Broadbent et al., 2000</td>
<td>Case reports</td>
<td>Level V Group</td>
<td>4</td>
<td>Quadriplegic CP– 9 yrs Diplegic CP – 14.5 yrs Hypotonia – 8 yrs Quadriplegic CP – 8 yrs</td>
<td>Walkabout used in combination with LGS</td>
<td>3 x wk 30 mins/day 4 x wk 2 hrs/day 5 x wk 4 hrs/day 2–4 x wk 40 mins/day</td>
<td>Able to walk independently Walking distance and speed increased 3/4 able to walk outdoors as well as indoors</td>
</tr>
<tr>
<td>Eisenberg et al., 2009</td>
<td>Non-random 2 group study</td>
<td>Level III Group</td>
<td>22</td>
<td>CP GMFCS IV or V aged 3.5-10 yrs. 11 children in walking group mean 6.1 yrs. 11 age and sex matched controls mean 6.7 yrs</td>
<td>David Hart walker or static stander</td>
<td>4 x wk 30 mins day Walking group increased to 4.5 hrs wk ± 2.3 over 6 mos</td>
<td>Statistically significant: increase in PEDI mobility skills (p=0.03); and improvement in bowel function (p=0.02) in walking group. Moderate association between longer standing or walking times and BMD. Walking distance improved in intervention group but did not achieve functional speed</td>
</tr>
<tr>
<td>Farrell et al., 2010</td>
<td>Case report</td>
<td>Level V Group</td>
<td>1</td>
<td>CP – 10 yrs</td>
<td>Lite Gait Walkable, Up n Go and Rifton Pacer</td>
<td>3-5 x wk 30 mins/day for 4 wks</td>
<td>Able to walk 150 ft in Pacer with assistance to steer. Increased initiation of stepping and weight-bearing. Decreased hip flexion in stance. Improved transfers and bed mobility. Increased GMFM and PAM scores</td>
</tr>
</tbody>
</table>
Table 1. (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>AACPDM Level</th>
<th>N</th>
<th>Population</th>
<th>Intervention</th>
<th>Time</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lancioni et al., 2005 24</td>
<td>SSRD ABAB design</td>
<td>Level IV</td>
<td>Single subject</td>
<td>Profound Intellectual disability and visual impairment. 13 yrs 1 month</td>
<td>Support walker with micro-switches. Stepping activated preferred stimulation during intervention phases.</td>
<td>5 mins, 2-4 x/day A – 20 sessions B – 43 sessions A – 18 sessions B – 116 sessions</td>
<td>Mean number of steps in first intervention phase – 45 steps with 3 indices of happiness. In first intervention phase this increased to 105 steps and 7 indices of happiness. There was a declining trend in second intervention phase and an increase again during second intervention phase. Change from baseline to intervention and second baseline to second intervention was significant for both number of steps and indices of happiness (P<0.01) 18 and 14 leg movements in first baseline phase First intervention phase – 52 and 82 leg/foot movements Second baseline - decline Second intervention phase – 58 and 129 leg/foot movements. Change in frequency between baseline and intervention phases significant (P<0.01) Baseline younger child – 35 steps increased to 75 in intervention. There was a decrease in second baseline and an increase to 100 in second intervention Older child had similar results but achieved higher step frequencies Step results were maintained at 1 month post intervention check Both children showed some increase in happiness indices during intervention and older child showed significant decline in aberrant behaviours during intervention phases and post-intervention check in comparison with baseline.</td>
</tr>
<tr>
<td>Lancioni et al., 2007a 25</td>
<td>SSRD ABAB design</td>
<td>Level IV</td>
<td>Single subject</td>
<td>Profound Intellectual Disability – 10 yrs and 8 yrs</td>
<td>Support walker. Sensors placed on shoes. Touching foot to the floor activated preferred stimulation during intervention phases</td>
<td>5 mins, 3–5 x day Baseline sessions: 22 and 7; 12 and 15 Intervention sessions: 96 and 48; 43 and 92</td>
<td></td>
</tr>
<tr>
<td>Lancioni et al., 2007b 26</td>
<td>SSRD ABAB design</td>
<td>Level IV</td>
<td>Single subject</td>
<td>Profound Intellectual Disability – 6.7 and 8.9 yrs</td>
<td>Support walker. Sensors on shoes. Stepping activated preferred stimulation during intervention phases</td>
<td>5 mins, 3–9 x day Baseline sessions: 16 and 11; 18 and 20 Intervention sessions: 77 and 112; 41 and 63</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>AACPDM Level</td>
<td>Population</td>
<td>Intervention</td>
<td>Time</td>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------</td>
<td>--------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Lancioni et al., 2008</td>
<td>SSRD AB younger child ABAB older</td>
<td>Level IV</td>
<td>Profound Intellectual Disability – 3 and 12 years</td>
<td>Support walker with microswitches. Stepping activated preferred stimulation during intervention phases</td>
<td>5 mins, 2–5 x day 19 baseline and 72 intervention sessions - younger child, 17 and 16 baseline; 81 and 262 intervention sessions - older child</td>
<td>Increased frequency of step responses with increasing trend during intervention phases. Decline with decreasing trend in second baseline phase for older child. Younger child: 6 in baseline – 56 steps in intervention phase. Older child: 18 and 79 steps during first and second baseline phases; 101 and 189 during first and second intervention phases. Difference between baseline and intervention (younger child) and combined baseline and intervention phases (older child) significant (P<0.01)</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>AACPDM Level</td>
<td>N</td>
<td>Population</td>
<td>Intervention</td>
<td>Time</td>
<td>Results</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------------</td>
<td>---------------</td>
<td>----</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>McKeever et al., 2013</td>
<td>Semi-structured interviews</td>
<td>Qualitative</td>
<td>19</td>
<td>Interviews with parents 3 years after their child began using walker. CP GMFCS III or IV aged 9-15.5 yrs at interview Mean 10.7 yrs</td>
<td>Hart walker</td>
<td>Not addressed</td>
<td>Parents value the physical benefits of being upright. They also reported psycho-social benefits such as improvements in communication and ability to participate with peers as well as enhanced freedom and independence</td>
</tr>
<tr>
<td>Van der Putten et al., 2005</td>
<td>Non-random pre-test post-test with control group design</td>
<td>Level III Group</td>
<td>44</td>
<td>Profound intellectual and multiple disabilities, 2-16 yrs 32 (mean 8.8 yrs) in intervention group and 12 (mean 10.6 yrs) controls. Two groups clinically comparable.</td>
<td>MOVE curriculum. Rifton Pacer gait trainer used as part of this program.</td>
<td>Daily in functional activities as per MOVE curriculum</td>
<td>Significantly increased independence in mobility skills in intervention group (P=0.001) moderate ES (0.69) Intervention: 20/32 increased, 4/32 decreased and 8/32 maintained level of independence. Controls: 4/12 increased, 3/12 decreased and 5/12 maintained level of independence</td>
</tr>
<tr>
<td>Whinnery and Barnes, 2002</td>
<td>Case study</td>
<td>Level V Group</td>
<td>1</td>
<td>CP – 3 yrs</td>
<td>MOVE curriculum. Rifton Pacer used as part of this program</td>
<td>In daily activities as per MOVE curriculum</td>
<td>Mean number of steps taken increased from 0 – 125 in gait trainer. Mean number of steps taken with adult assistance increased from 15–509</td>
</tr>
<tr>
<td>Willoughby et al., 2010</td>
<td>RCT</td>
<td>Level II Group</td>
<td>34</td>
<td>CP GMFCS III or IV 5–18 yrs Mean 10.35 yrs experimental group; 11.24 yrs control group</td>
<td>BWSTT vs overground walking. Children in GMFCS IV use gait trainers</td>
<td>30 mins, 2x wk for 9 weeks</td>
<td>No statistically significant difference between the groups. Trend towards increased distance walk in overground walking group</td>
</tr>
<tr>
<td>Wright et al., 1999</td>
<td>Pre-test post-test one group study</td>
<td>Level IV Group</td>
<td>20</td>
<td>CP GMFCS IV or V 4–12.8 yrs Mean 7.9 yrs</td>
<td>Hart walker</td>
<td>30 mins, 5 x wk</td>
<td>Significant improvement in: walking speed and distance (P<0.05); GMFM walk scores (P=0.006); and Directional Mobility Assessment scores (P=0.01) by 12 months. PEDI mobility scores significantly higher in walker (P<0.04) but did not change between 2 and 12 months. 6 children walked long distances indoors and out, 6 used in household and classroom, and 7 used for standing and exercise</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>AACPDM Level</td>
<td>N</td>
<td>Population</td>
<td>Intervention</td>
<td>Time</td>
<td>Results</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>----</td>
<td>---</td>
<td>--------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Wright et al., 2006</td>
<td>Pre-test post-test one group study. Assessed at 24 and 36 months follow-up</td>
<td>Level IV Group</td>
<td>19</td>
<td>CP GMFCS III or IV, aged 9–15.5 yrs at time of assessment after 3 years of use. Mean 10.7 yrs</td>
<td>Hart walker</td>
<td>13 children still used walker. Remainder too tall.</td>
<td>Walking speed unchanged from 12 mos. No significant change in GMFM scores from 12–36 mos. Significant gains on Directional Mobility Assessment ($P=0.02$). Increased self-care and social function scores at 24 mos on PEDI may be clinically but not statistically significant. Scores did not change from 24–36 mos</td>
</tr>
</tbody>
</table>

have good test-retest reliability for children with disabilities. The only multiple baseline study31 used the Top Down Motor Milestone Test, with modifications40 and reports that it is a useful evaluative tool for measuring functional motor outcomes in children with severe and profound disabilities.

Outcomes were divided into ICF11,12 components with details shown in Table 2. Body structure and function and participation outcomes were reported in only a few studies. The majority of included studies provided activity level outcomes with the largest group of studies measuring independence in mobility or walking.20-23,31,34,35

Discussion

Evidence supporting efficacy of gait trainers is primarily descriptive and, while impact is reported to be positive, no strong conclusions can be drawn. Use of a gait trainer to increase ability of children with cerebral palsy, Gross Motor Function Classification System level IV or V, to take steps and increase walking distance is supported by the highest levels of evidence identified in this review. However, the single small randomized trial33 only suggests a trend towards increased distance in the overground walking group and cannot be considered high-quality evidence. The other level II study is a single-subject design19 and includes only three participants using a gait trainer. Two non-randomized group studies22,31 support impact on independence in walking and mobility level with one of these22 reporting impact on bowel function and bone mineral density. Remaining lower-level evidence, case series and case-studies, provides support for positive impact on a range of activity outcomes including increased levels of overall independence, mobility, transfers, self-care abilities and posture. A group of single-subject designs24-29 reports impact on affect, and motivation by adding sensory feedback to the gait trainer. One case series35 and a qualitative study30 support a positive impact on ability to participate with others and no evidence of harms or negative impact of gait trainer use was found.

From this review, the population that appears to benefit most from gait trainer interventions is children with cerebral palsy or related complex developmental delays. Two or three years-of-age appears to be the youngest age of introduction and is concerning as evidence around impact of upright positioning and mobility on motor and sensory,41 visual42,43 and social development44 suggests that mobility assistive technologies should be introduced around nine to 12 months-of-age when children who are typically developing begin to explore their environment. While there appears to be little question that children with the more severe forms of cerebral palsy require the support of gait trainers, those children with mild to moderate forms (levels II and III) are unable to walk with hand-held walkers or independently below two years-of-age45 and yet are typically not considered for gait trainer interventions that may facilitate weight bearing against gravity during this early critical period of sensory, motor, muscle and bone development. One case study involving a child with a spinal cord injury20 provides support for the use of gait trainers as a transitional aid for children who have potential for more independent ambulation. Use of gait trainers with adolescents may be challenging due to difficulties with transfers and increasing physical limitations,30,35 however, the motor growth curves suggest that adolescents with cerebral palsy tend to lose walking skills,46 and gait trainers may assist in maintaining walking ability during this critical period.

The lack of experimental evidence identified in this review suggests that further research is needed to explore the broad range of outcomes that may be influenced by gait trainer interventions. Activity level outcomes should be explored with higher-level experimental designs while body structure and function and participation outcomes research should be expanded through a variety of research designs including qualitative and mixed-methods studies in order to establish a baseline of data prior to development of quasi-experimental or experimental studies. Psycho-social and quality-of-life impacts also merit further exploration as well as studies that compare different features and styles of gait trainers. There are significant difficulties inherent in carrying out more rigorous experimental designs and the lack of rigorous outcomes research for all assistive technology interventions may relate to a lack of sensitive or appropriate standardized outcome measurement tools.47
The Gross Motor Function Measure is a criterion-referenced evaluative measure that has established reliability and validity for children with cerebral palsy. While the 88 item version has been used to evaluate impact of walking aids on gross motor skills, all standing and walking items cannot...
be completed by children who cannot walk unaided and therefore it may not be the most appropriate tool to measure outcomes of gait trainer interventions. Researchers in the Hart Walker studies recognized this and developed other tools to measure change in independent mobility and quality of walking. The Supported Walker Ambulation Performance Scale (SWAPS) is designed to be sensitive to changes in gait of children who are unable to walk independently and preliminary inter-rater reliability and construct validity testing is encouraging. It may be a more appropriate tool for future experimental designs. The Pediatric Evaluation of Disability Inventory has established reliability and validity for children with cerebral palsy and the mobility domain appears to discriminate between non-ambulatory children with or without a gait trainer. However, in contrast to the social function and self-care domains, the mobility domain does not appear sensitive to change over time in older children with cerebral palsy. In the case report by Farrell and colleagues, the Physical Abilities Mobility Scale was found to be more sensitive to changes in transfer and functional abilities in non-ambulatory children than the Functional Independence Measure for Children (WeeFIM). These findings suggest that researchers need to consider carefully the age, population and outcomes being measured in order to select appropriate activity level outcome measures for future experimental research.

None of the included studies used standardized measures to explore satisfaction with the gait trainer or the ‘fit’ between the child, the technology and the various environmental factors. Standardized technology satisfaction measures that have been used to explore impact of power mobility interventions on children with motor impairments may be appropriate to consider for use with gait trainer outcomes research.

No research evaluating effectiveness of different types of gait trainers or evaluating their characteristics was found in this review and the following observations are based on clinical experience and background evidence. The Hart Walker, Mulholland Walkabout and newer models like the Prime Engineering KidWalk are all posterior hands-free walkers and parents may prefer this style with its more ‘typical’ appearance. Using upper limbs for support when walking, may be detrimental to sensory development suggesting that hands-free gait trainers may be more appropriate for younger children. Research with children using hand-held walkers suggests that walkers with posterior configurations promote gait, posture and participation. However, older teens may have flexion contractures and an anterior gait trainer that offers upper extremity support may be preferred for this population. Some walkers (e.g. Rifton Pacer or Ormesa Grillo) can be used in either configuration. The Mulholland Walkabout and Prime Engineering KidWalk offer dynamic support and may allow for pelvic movement and weight shift. Research on dynamic seating suggests that dynamic gait trainers may be beneficial for children with spasticity and dystonia.

There are a number of limitations to this study. Firstly, inclusion criteria were restricted to research studies published in English in peer-reviewed journals so grey literature and studies published in other languages may have been missed. The electronic search was challenging as many different terms have been used to describe gait trainers and more generic terms like walker or walking were difficult to narrow down. However, hand searching was effective in identifying more than half the studies that met inclusion criteria. The fact that no additional studies emerged in recent comprehensive reviews of interventions for children with cerebral palsy and children and adults with intellectual disabilities suggests that our search was relatively complete. Although, the search covered a long time period, early studies did not include outcomes information and so, all included studies took place in the last fifteen years and met similar reporting standards. One other limitation is that the quality rating used is only relevant to evidence level I-III studies and so excluded the majority of included studies.

Although the evidence supporting effectiveness is primarily descriptive rather than experimental, outcomes appear generally positive and no evidence of harm was found. No strong conclusions can be reached at this point and further research is needed. Clinicians should continue to measure
outcomes for individual children to ensure that goals of intervention are being met for gait trainer interventions.

Clinical messages

- Gait trainers may assist development of independent stepping and walking distance for some children who are unable to walk without support.
- Observational evidence suggests that gait trainers may have a positive impact on body structure and function, activity and participation outcomes.

Conflict of interest

The first author has worked as an educational consultant for various manufacturers and suppliers of gait trainers. Funding from these sources did not influence or bias the content of this work. The second author reports no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

